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VIII. RADIATION IN THE EARLY UNIVERSE

Up to now we have ignored radiation. At early time (i.e., large z), radiation
dominates the energy density of the universe. We wish to calculate both the time
(or redshift) at which that occurs and the time evolution of the universe before that
epoch.

A. Review of Blackbody Radiation

The spectrum of radiation from a black body of temperature T is given by

Iν =
2hν3

c2
1

exp[hν/kT ]− 1
. (10.1)

The units are erg s−1 cm−2 ster−1. The total specific intensity integrated over
frequency is

I =
∫ ∞

0
Iνdν =

σ

π
T 4, (10.2)

where σ = 2π5k4/15c2h3 = 5.7×10−5 is Stephan’s constant. The total flux radiated
outward from a surface is

F =
∫

2π
I cos θdω = σT 4. (10.3)

The units are erg s−1 cm−2. The energy density is

u =
∫

4π
I cos θdω =

4σ

c
T 4. (10.4)

The units are erg cm−3. Radiation pressure is given by P =
∫
4π

I
c cos2 θdω = 1

3u.
The photon density is given by

nν =
Iν
hν

; n =
∫ ∞

0
nνdν ∝

u

kT
. (10.5)

This last integral for the total photon density cannot be done analytically.

For our purposes it is sufficient to know just how radiation properties vary
with redshift. We showed previously that the temperature of black-body radation
varies with curvature radius R as T ∝ 1/R ∝ (1 + z). Hence the energy density
u ∝ 1/R4 ∝ (1 + z)4. The photon number density varies as n ∝ 1/R3 ∝ (1 + z)3

which is the same dependence on z as ordinary matter. From the previous chapter,
we find that radiation has an equation state given by w = 1/3.

The ratio of radiation density to ordinary matter density is given as follows.
The radiation density is u0 = 4σT 4/c = 4 × 10−13 erg cm−3, where we have used
T = 2.7 K. The matter density is ρ0 = Ω0ρcrit = 1.9 × 10−29Ωh2 g cm−3. Then
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u0/(ρ0c
2) = 2.3×10−5/(Ωh2). In the past, ρmatter ∝ (1+z)3 while ρrad ∝ (1+z)4.

Hence ur/(ρc
2) = 1 at z = 4× 104Ω0h

2.

Recall that Ω is not a constant for all time but varies with time in the sense that
if Ω deviates from unity at any given time, the deviation increases with increasing
time. Conversely, if Ω is not unity now, then by going back in time (or looking at
high z) there is a point where Ω was still insensibly different from 1. This crossover
redshift can be found by use of Equation (6.11):

Ω =
Ω0(1 + z)

1 + Ω0z
. (10.6)

We find that the critical redshift is given roughly by z ≈ 1/Ω0. Now Ω > 0.02
for sure (this being the amount of matter in visible stars) and Ω > 0.25 possibly
(if there is as much dark matter as appears to be in clusters); hence the crossover
redshift lies less than 50 for sure and less than 5 likely. The upshot is that when
the universe was in the radiation dominated phase, it was insensibly different from
one that was critically bound. This has the effect of simplifying the treatment of
the universe during the radiation dominated phase.

Equation of Motion

The equation of motion are given by Eq. 8.6:

1

2
Ṙ2 + Φ =

1

2
Ṙ2 − 4

3
πGρR2 = 0. (10.7)

Integration of Eq. (10.7) gives

R2 = 2

√
8πGα

3
t =

√
α

ρ
. (10.8)

Hence

t =

√
3

32πGρ
=

2.3

T 2
10

, (10.9)

where T10 is the temperature of the universe at any epoch in units of 1010 K.
For example, if Ω0h

2 = 1, then the transition between a radiation-dominated and
matter-dominated universe happens at z = 104, where TBB = 105 K and the age
of the universe is 625 years; if Ω0h

2 = 1/4, then z = 104. TBB = 2.7× 104 K, and
t = 104 years. These numbers are approximate only, as they ignore the contribution
of neutrinos.

For completeness, note that the equation equivalent to Eq. (10.9) for the matter
dominated era is

t =
1√

6πGρm
. (10.10)
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The ratio of baryon number density to photon number density is approximately

nB
nγ

= η =
ΩBρcrit/µ

ρr/kT
≈ 10−8ΩBh

2. (10.11)

More careful computations of the photon number density give 2.8 × 10−8 for the
right hand side. Here, µ is the mass of a baryon (1.6 × 10−24 g) and ΩB is the
contribution of baryons alone to the closure density of the universe. This ratio has
been nearly constant since very early phases of the universe.

Recombination

At early times the universe was sufficiently hot that matter was almost com-
pletely ionized. Today the universe is extremely cold, so any matter not collected
into stars is almost completely neutral. Hence there was an epoch when ionized
matter (primarily hydrogen and helium) recombined. This epoch is quite impor-
tant for observations: in the ionized state, the universe is essentially opaque (i.e.,
the mean free path of a photon is much smaller than the size of the universe, pri-
marily due to Compton scattering off free electrons) while in the neutral state, the
universe is essentially transparent. The recombination epoch sets the size of the
“visible” universe in the sense that we can observe the universe only to the redshift
that corresponds to the recombination era; it is at this epoch that photons in the
microwave background radiation last scattered off free electrons before becoming
essentially free-streaming, and it is at this epoch that fluctuations in the microwave
background temperature were generated. By coincidence, the epoch of recombi-
nation is very close to the epoch at which the universe made the transition from
radiation-dominated to matter-dominated, with recombination occurring slightly
later.

The temperature at which recombination occurs is determined primarily by the
atomic physics of the hydrogen atom. To calculate that temperature, it is easiest to
borrow the Saha equation from the physics of stellar interiors. The Saha equation
gives the ratio of ionized to neutral species provided that they are in thermodynamic
equilibrium. Let ne be the density of electron, np be the density of protons, and
nH be the density of neutral hydrogen atoms. Then

nenp
nH

=
(2πkT )3/2

h3

(
memp

mH

)3/2

exp
[
−ER
kT

]
, (10.12)

where me, mp, and mH are the masses of protons, electrons, and hydrogen atoms
respectively, and ER = 13.6 ev is the ionization energy of hydrogen. This equation
can be cast into a dimensionless form by introducing variables Xe, Xp, and Xh

which we define to be the ratios n/nB of the various species, with nB=number
density of baryons. We have:

nγ =
0.37aT 4

kT
, (10.12)

nB =2.8× 120−8ΩBh
2nγ , (10.13)
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where nγ is the number density of photons. Substituting these equations into the
Saha equation, we find

XeXp

XH
=

8.8× 1013

Ωbh2

(
ER
kT

)3/2

exp
[
−ER
kT

]
. (10.14)

Taking ΩBh
2 ≈ 0.02 and XeXp/XH = 0.5, we find that ER/kT ≈ 42 or

T ≈ 3700 K. This temperature corresponds to a redshift of z ≈ 1400. The actual
temperature depends only logarithmically on the uncertain parameter ΩBh

2. For
plausible values of Ω0h

2, recombination occurs after the universe becomes matter
dominated. The age of the universe at recombination is

t =
1√

6πGρ
=

130, 000 years√
Ω0h2

. (10.15)

One last detail to check is that the universe is indeed in thermodynamic equilib-
rium. The relevant quantity to check is the recombination rate. Once again, from
atomic physics, we find that the recombination rate is given (approximately) by

dnH
dt

= nenpα = nenp × 2.6× 10−13

(
104

T

)1/2

. (10.16)

At T = 3700 K and np ≈ nB ≈ 5.8× 10−7T 3ΩBh
2 we find that the time scales are

t ≈ 1

npα
=

2.7

ΩBh2
years ≈ 138 years. (10.17)

Hence the universe is indeed in equilibrium at all times.


